Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0359320060460030255
Korean Journal of Veterinary Research
2006 Volume.46 No. 3 p.255 ~ p.261
Optimization of monitoring methods for air-borne bacteria in the environmental conditions of pig facilities
ÀÌ´ö¿ë
¼­¿¬¼ö/°­»ó±Õ/À¯ÇÑ»ó
Abstract
Experimental animals have been used to biological and medical purposes and the animals must be, for these purposes, healthy and clean to microbial infection. However, the animals can be easily exposed to pathogenic microorganism via several routes. Of the routes, environmental conditions are the most important factors to keep the animals healthy and clean, especially air condition. Monitoring of air-condition has been required to keep the animal healthy and clean. However, any guideline is not available for experimental conditions with pigs. Therefore, the sampling times and points were compared in different conditions to establish an optimal protocol for monitoring of air borne bacteria. Tryptic soy agar(TSA), blood agar containing 5% defibrinated sheep blood and Sabraud dextrose agar(SDA) were used as media to capture total bacteria, pathogenic bacteria and fungi, respectively. Two methods, compulsive capture using an air-sampler and capturing fall-down bacteria were used to capture the microorganisms in the air. The points and time of capturing were different at each experiment. Air borne microorganisms were captured at three and five points in the open and closed equipments, respectively. Air was collected using an air-sampler for 1 min and 5 min and the agar plates as open status were left from 30 min to 2hr. At first, we monitored an experimental laboratory which dealt with several pathogenic bacteria and then, a protocol obtained from the investigation was applied to open or close experimental conditions with pigs. Number of bacteria was high from 10:00 to 15:00, especially on 13:30-15:30 but sharply decreased after 17:00. The tendency of the number of bacteria was similar between two methods even though the absolute number was higher with air sampler. Critical difference in the number of cells was observed at 5 min with air sampler and 2 hr with fall-down capturing method. However, 1 min with air sampler and 1 hr with fall-down capturing were the best condition to identify bacterial species collected from the air. Number of bacteria were different depending on the sampling points in closed condition but not in opened condition. Based on our results, a guide-line was suggested for screening air-borne microorganism in the experimental conditions with pigs.
KEYWORD
monitoring method, air-borne bacteria, environmental condition
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)